154 research outputs found

    Internetwork and intranetwork communications during bursting dynamics: Applications to seizure prediction

    Get PDF
    We use a simple dynamical model of two interacting networks of integrate-and-fire neurons to explain a seemingly paradoxical result observed in epileptic patients indicating that the level of phase synchrony declines below normal levels during the state preceding seizures (preictal state). We model the transition from the seizure free interval (interictal state) to the seizure (ictal state) as a slow increase in the mean depolarization of neurons in a network corresponding to the epileptic focus. We show that the transition from the interictal to preictal and then to the ictal state may be divided into separate dynamical regimes: the formation of slow oscillatory activity due to resonance between the two interacting networks observed during the interictal period, structureless activity during the preictal period when the two networks have different properties, and bursting dynamics driven by the network corresponding to the epileptic focus. Based on this result, we hypothesize that the beginning of the preictal period marks the beginning of the transition of the epileptic network from normal activity toward seizing

    Network structure determines patterns of network reorganization during adult neurogenesis

    Full text link
    New cells are generated throughout life and integrate into the hippocampus via the process of adult neurogenesis. Epileptogenic brain injury induces many structural changes in the hippocampus, including the death of interneurons and altered connectivity patterns. The pathological neurogenic niche is associated with aberrant neurogenesis, though the role of the network-level changes in development of epilepsy is not well understood. In this paper, we use computational simulations to investigate the effect of network environment on structural and functional outcomes of neurogenesis. We find that small-world networks with external stimulus are able to be augmented by activity-seeking neurons in a manner that enhances activity at the stimulated sites without altering the network as a whole. However, when inhibition is decreased or connectivity patterns are changed, new cells are both less responsive to stimulus and the new cells are more likely to drive the network into bursting dynamics. Our results suggest that network-level changes caused by epileptogenic injury can create an environment where neurogenic reorganization can induce or intensify epileptic dynamics and abnormal integration of new cells.Comment: 28 pages, 10 figure

    Implications of the precision data for very light Higgs boson scenario in 2HDM, 2

    Get PDF
    We present an up-to-date analysis of the constraints imposed bythe precision data on the (CPCP- conserving) Two-Higgs-Doublet Model of type II, with emphasis on the possible existence of very light neutral (pseudo)scalar Higgs boson with mass below 20--30 GeV. We show that even in the presence of such light particles, the 2HDM(II) can describe the electroweak data with precision comparable to that given by the SM. Particularly interesting lower limits on the mass of the lighter neutral CPCP-even scalar h0h^0 are obtained in the scenario with a light CPCP-odd Higgs boson A0A^0 and large tanβ\tan\beta

    Network topology and intrinsic excitability of the existing network drive integration patterns in a model of adult neurogenesis

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/112379/1/12868_2013_Article_3276.pd

    Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation

    Full text link
    The hippocampus has the capacity for reactivating recently acquired memories [1-3] and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces [4-11]. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters [12,13].Comment: 16 pages, 5 figure

    From network structure to network reorganization: implications for adult neurogenesis

    Full text link
    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85406/1/ph10_4_046008.pd

    Modeling the formation and dynamics of cortical waves induced by cholinergic modulation

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/134563/1/12868_2015_Article_4163.pd
    corecore